p-group, metabelian, nilpotent (class 3), monomial
Aliases: C24.174C23, C24.7(C2×C4), C22.50(C4×D4), C22⋊C4.119D4, C23.9D4⋊9C2, (C22×C4).293D4, C23.128(C2×D4), C22.30C22≀C2, C23.34D4⋊7C2, C23.121(C4○D4), C22.48(C4⋊D4), C23.193(C22×C4), (C23×C4).262C22, (C22×D4).27C22, C2.38(C23.23D4), C2.27(C23.C23), C22.28(C22.D4), (C2×C4⋊C4)⋊13C4, (C2×C22⋊C4)⋊5C4, (C2×C23⋊C4).7C2, (C2×C42⋊C2)⋊3C2, (C22×C4).19(C2×C4), (C2×C4).196(C22⋊C4), (C2×C22⋊C4).13C22, C22.274(C2×C22⋊C4), (C2×C22.D4).3C2, SmallGroup(128,631)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C24.174C23
G = < a,b,c,d,e,f,g | a2=b2=c2=d2=1, e2=c, f2=ca=ac, g2=d, ab=ba, eae-1=faf-1=ad=da, ag=ga, bc=cb, bd=db, geg-1=be=eb, bf=fb, bg=gb, fcf-1=cd=dc, ce=ec, cg=gc, de=ed, df=fd, dg=gd, fef-1=ae, fg=gf >
Subgroups: 420 in 189 conjugacy classes, 56 normal (20 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, D4, C23, C23, C23, C42, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C24, C2.C42, C23⋊C4, C2×C42, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C42⋊C2, C22.D4, C23×C4, C22×D4, C23.9D4, C23.34D4, C2×C23⋊C4, C2×C42⋊C2, C2×C22.D4, C24.174C23
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, C22×C4, C2×D4, C4○D4, C2×C22⋊C4, C4×D4, C22≀C2, C4⋊D4, C22.D4, C23.23D4, C23.C23, C24.174C23
(1 5)(2 6)(3 7)(4 8)(9 15)(10 13)(11 16)(12 14)(17 31)(18 30)(19 29)(20 32)(21 22)(23 24)(25 26)(27 28)
(1 3)(2 4)(5 7)(6 8)(9 10)(11 12)(13 15)(14 16)(17 32)(18 29)(19 30)(20 31)(21 27)(22 28)(23 25)(24 26)
(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)
(1 2)(3 4)(5 6)(7 8)(9 12)(10 11)(13 16)(14 15)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)
(5 6)(7 8)(9 10)(11 12)(13 14)(15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 21 5 24)(2 23 6 22)(3 27 7 26)(4 25 8 28)(9 20 15 30)(10 31 13 19)(11 29 16 17)(12 18 14 32)
(1 11 2 10)(3 12 4 9)(5 16 6 13)(7 14 8 15)(17 22 19 24)(18 25 20 27)(21 29 23 31)(26 32 28 30)
G:=sub<Sym(32)| (1,5)(2,6)(3,7)(4,8)(9,15)(10,13)(11,16)(12,14)(17,31)(18,30)(19,29)(20,32)(21,22)(23,24)(25,26)(27,28), (1,3)(2,4)(5,7)(6,8)(9,10)(11,12)(13,15)(14,16)(17,32)(18,29)(19,30)(20,31)(21,27)(22,28)(23,25)(24,26), (17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,2)(3,4)(5,6)(7,8)(9,12)(10,11)(13,16)(14,15)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,21,5,24)(2,23,6,22)(3,27,7,26)(4,25,8,28)(9,20,15,30)(10,31,13,19)(11,29,16,17)(12,18,14,32), (1,11,2,10)(3,12,4,9)(5,16,6,13)(7,14,8,15)(17,22,19,24)(18,25,20,27)(21,29,23,31)(26,32,28,30)>;
G:=Group( (1,5)(2,6)(3,7)(4,8)(9,15)(10,13)(11,16)(12,14)(17,31)(18,30)(19,29)(20,32)(21,22)(23,24)(25,26)(27,28), (1,3)(2,4)(5,7)(6,8)(9,10)(11,12)(13,15)(14,16)(17,32)(18,29)(19,30)(20,31)(21,27)(22,28)(23,25)(24,26), (17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,2)(3,4)(5,6)(7,8)(9,12)(10,11)(13,16)(14,15)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,21,5,24)(2,23,6,22)(3,27,7,26)(4,25,8,28)(9,20,15,30)(10,31,13,19)(11,29,16,17)(12,18,14,32), (1,11,2,10)(3,12,4,9)(5,16,6,13)(7,14,8,15)(17,22,19,24)(18,25,20,27)(21,29,23,31)(26,32,28,30) );
G=PermutationGroup([[(1,5),(2,6),(3,7),(4,8),(9,15),(10,13),(11,16),(12,14),(17,31),(18,30),(19,29),(20,32),(21,22),(23,24),(25,26),(27,28)], [(1,3),(2,4),(5,7),(6,8),(9,10),(11,12),(13,15),(14,16),(17,32),(18,29),(19,30),(20,31),(21,27),(22,28),(23,25),(24,26)], [(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32)], [(1,2),(3,4),(5,6),(7,8),(9,12),(10,11),(13,16),(14,15),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32)], [(5,6),(7,8),(9,10),(11,12),(13,14),(15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,21,5,24),(2,23,6,22),(3,27,7,26),(4,25,8,28),(9,20,15,30),(10,31,13,19),(11,29,16,17),(12,18,14,32)], [(1,11,2,10),(3,12,4,9),(5,16,6,13),(7,14,8,15),(17,22,19,24),(18,25,20,27),(21,29,23,31),(26,32,28,30)]])
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2I | 2J | 4A | 4B | 4C | 4D | 4E | ··· | 4N | 4O | ··· | 4U |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 8 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 8 | ··· | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | ||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C4 | C4 | D4 | D4 | C4○D4 | C23.C23 |
kernel | C24.174C23 | C23.9D4 | C23.34D4 | C2×C23⋊C4 | C2×C42⋊C2 | C2×C22.D4 | C2×C22⋊C4 | C2×C4⋊C4 | C22⋊C4 | C22×C4 | C23 | C2 |
# reps | 1 | 2 | 1 | 2 | 1 | 1 | 4 | 4 | 4 | 4 | 4 | 4 |
Matrix representation of C24.174C23 ►in GL6(𝔽5)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 3 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 4 | 4 | 0 | 4 |
0 | 0 | 1 | 1 | 4 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 2 | 4 | 0 |
0 | 0 | 4 | 3 | 0 | 4 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
2 | 0 | 0 | 0 | 0 | 0 |
0 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 4 | 4 | 0 | 0 |
0 | 0 | 4 | 3 | 0 | 4 |
0 | 0 | 0 | 0 | 1 | 0 |
2 | 0 | 0 | 0 | 0 | 0 |
0 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 2 | 3 | 0 |
0 | 0 | 0 | 0 | 1 | 1 |
0 | 0 | 1 | 2 | 0 | 1 |
0 | 0 | 4 | 4 | 0 | 4 |
0 | 4 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 0 | 0 | 0 |
0 | 0 | 0 | 2 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 0 |
0 | 0 | 0 | 0 | 0 | 2 |
G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,4,1,0,0,3,1,4,1,0,0,0,0,0,4,0,0,0,0,4,0],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,1,4,0,0,0,1,2,3,0,0,0,0,4,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[2,0,0,0,0,0,0,3,0,0,0,0,0,0,1,4,4,0,0,0,0,4,3,0,0,0,0,0,0,1,0,0,0,0,4,0],[2,0,0,0,0,0,0,2,0,0,0,0,0,0,1,0,1,4,0,0,2,0,2,4,0,0,3,1,0,0,0,0,0,1,1,4],[0,4,0,0,0,0,4,0,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,2] >;
C24.174C23 in GAP, Magma, Sage, TeX
C_2^4._{174}C_2^3
% in TeX
G:=Group("C2^4.174C2^3");
// GroupNames label
G:=SmallGroup(128,631);
// by ID
G=gap.SmallGroup(128,631);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,2,-2,224,141,288,422,352,2019,1018,2028]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=1,e^2=c,f^2=c*a=a*c,g^2=d,a*b=b*a,e*a*e^-1=f*a*f^-1=a*d=d*a,a*g=g*a,b*c=c*b,b*d=d*b,g*e*g^-1=b*e=e*b,b*f=f*b,b*g=g*b,f*c*f^-1=c*d=d*c,c*e=e*c,c*g=g*c,d*e=e*d,d*f=f*d,d*g=g*d,f*e*f^-1=a*e,f*g=g*f>;
// generators/relations